Nuprl Lemma : strict-inc_wf

StrictInc ∈ Type


Proof




Definitions occuring in Statement :  strict-inc: StrictInc member: t ∈ T universe: Type
Definitions unfolded in proof :  strict-inc: StrictInc member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  nat_wf all_wf int_seg_wf less_than_wf int_seg_subtype_nat false_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep setEquality functionEquality cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin lambdaEquality natural_numberEquality setElimination rename hypothesisEquality applyEquality independent_isectElimination independent_pairFormation lambdaFormation because_Cache

Latex:
StrictInc  \mmember{}  Type



Date html generated: 2016_05_14-PM-09_47_18
Last ObjectModification: 2015_12_26-PM-09_47_36

Theory : continuity


Home Index