Step
*
1
2
1
2
1
of Lemma
strong-continuity-implies3
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ)))))
4. d : ∀n:ℕ. ∀s:ℕn ⟶ ℕ. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
5. f : ℕ ⟶ ℕ
6. n : ℕ
7. (M n f) = (inl (F f)) ∈ (ℕ?)
8. ∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ))
⊢ ∃n:ℕ
((case d n f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ = (inl (F f)) ∈ (ℕ?))
∧ (∀m:ℕ
((↑isl(case d m f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ ))
⇒ (case d m f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ = (inl (F f)) ∈ (ℕ?)))))
BY
{ (With ⌜imax(n;F f) + 1⌝ (D 0)⋅ THENA Auto) }
1
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ)))))
4. d : ∀n:ℕ. ∀s:ℕn ⟶ ℕ. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
5. f : ℕ ⟶ ℕ
6. n : ℕ
7. (M n f) = (inl (F f)) ∈ (ℕ?)
8. ∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ))
⊢ (case d (imax(n;F f) + 1) f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ = (inl (F f)) ∈ (ℕ?))
∧ (∀m:ℕ
((↑isl(case d m f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ ))
⇒ (case d m f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ = (inl (F f)) ∈ (ℕ?))))
Latex:
Latex:
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}
2. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}?)
3. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. (\mdownarrow{}\mexists{}n:\mBbbN{}. (((M n f) = (inl (F f))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} (m = n)))))
4. d : \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. Dec(\mexists{}i:\mBbbN{}n. ((\muparrow{}isl(M i s)) \mwedge{} outl(M i s) < n))
5. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}
6. n : \mBbbN{}
7. (M n f) = (inl (F f))
8. \mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} (m = n))
\mvdash{} \mexists{}n:\mBbbN{}
((case d n f of inl(t) => M (fst(t)) f | inr(x) => inr \mcdot{} = (inl (F f)))
\mwedge{} (\mforall{}m:\mBbbN{}
((\muparrow{}isl(case d m f of inl(t) => M (fst(t)) f | inr(x) => inr \mcdot{} ))
{}\mRightarrow{} (case d m f of inl(t) => M (fst(t)) f | inr(x) => inr \mcdot{} = (inl (F f))))))
By
Latex:
(With \mkleeneopen{}imax(n;F f) + 1\mkleeneclose{} (D 0)\mcdot{} THENA Auto)
Home
Index