Step
*
1
1
1
1
of Lemma
strong-continuity2-implies-uniform-continuity2-int
.....assertion.....
1. F : (ℕ ⟶ 𝔹) ⟶ ℤ
2. ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℤ)))
3. ∃n:ℕ. ucpB(ℤ;F;n)
⇐⇒ ∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℤ))
⊢ ⇃(∃n:ℕ. ucpB(ℤ;F;n))
BY
{ TACTIC:(D (-1)
THEN All(Unfold `rev_implies`)
THEN Thin (-2)
THEN RenameVar `f' (-1)
THEN RenameVar `x' (-2)
THEN UseWitness ⌜f x⌝⋅
THEN newQuotientElim1 (-2)⋅
THEN Auto) }
Latex:
Latex:
.....assertion.....
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbZ{}
2. \00D9(\mexists{}n:\mBbbN{}. \mforall{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((f = g) {}\mRightarrow{} ((F f) = (F g))))
3. \mexists{}n:\mBbbN{}. ucpB(\mBbbZ{};F;n) \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}. \mforall{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((f = g) {}\mRightarrow{} ((F f) = (F g)))
\mvdash{} \00D9(\mexists{}n:\mBbbN{}. ucpB(\mBbbZ{};F;n))
By
Latex:
TACTIC:(D (-1)
THEN All(Unfold `rev\_implies`)
THEN Thin (-2)
THEN RenameVar `f' (-1)
THEN RenameVar `x' (-2)
THEN UseWitness \mkleeneopen{}f x\mkleeneclose{}\mcdot{}
THEN newQuotientElim1 (-2)\mcdot{}
THEN Auto)
Home
Index