Step * 1 of Lemma strong-continuity2-implies-weak-skolem-cantor


1. (ℕ ⟶ 𝔹) ⟶ 𝔹
⊢ ⇃(∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕf ⟶ 𝔹))  g))
BY
xxx(InstLemma `strong-continuity2-no-inner-squash-cantor4` [⌜F⌝]⋅ THENA Auto)xxx }

1
1. (ℕ ⟶ 𝔹) ⟶ 𝔹
2. ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (𝔹?)
      ∀f:ℕ ⟶ 𝔹((∃n:ℕ((M f) (inl (F f)) ∈ (𝔹?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (𝔹?) supposing ↑isl(M f))))
⊢ ⇃(∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕf ⟶ 𝔹))  g))


Latex:


Latex:

1.  F  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbB{}
\mvdash{}  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  F  f  =  F  g))


By


Latex:
xxx(InstLemma  `strong-continuity2-no-inner-squash-cantor4`  [\mkleeneopen{}F\mkleeneclose{}]\mcdot{}  THENA  Auto)xxx




Home Index