Step
*
1
1
1
1
1
2
of Lemma
strong-continuity2-no-inner-squash-bound
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ ℕ. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))
4. d : ∀n:ℕ. ∀s:ℕn ⟶ ℕ. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
⊢ ∀f:ℕ ⟶ ℕ
∃n:ℕ
(F f < n
∧ (((λn,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr ⋅ ) n f) = (inl (F f)) ∈ (ℕ?))
∧ (∀m:ℕ
((↑isl((λn,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr ⋅ ) m f))
⇒ (((λn,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr ⋅ ) m f) = (inl (F f)) ∈ (ℕ?)))))
BY
{ TACTIC:(Reduce 0 THEN ParallelOp -2 THEN ExRepD) }
1
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ ℕ. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))
4. d : ∀n:ℕ. ∀s:ℕn ⟶ ℕ. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
5. f : ℕ ⟶ ℕ
6. n : ℕ
7. (M n f) = (inl (F f)) ∈ (ℕ?)
8. ∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)
⊢ ∃n:ℕ
(F f < n
∧ (case d n f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ = (inl (F f)) ∈ (ℕ?))
∧ (∀m:ℕ
((↑isl(case d m f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ ))
⇒ (case d m f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ = (inl (F f)) ∈ (ℕ?)))))
Latex:
Latex:
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}
2. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}?)
3. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
((\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f)))
4. d : \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. Dec(\mexists{}i:\mBbbN{}n. ((\muparrow{}isl(M i s)) \mwedge{} outl(M i s) < n))
\mvdash{} \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
\mexists{}n:\mBbbN{}
(F f < n
\mwedge{} (((\mlambda{}n,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr \mcdot{} ) n f) = (inl (F f)))
\mwedge{} (\mforall{}m:\mBbbN{}
((\muparrow{}isl((\mlambda{}n,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr \mcdot{} ) m f))
{}\mRightarrow{} (((\mlambda{}n,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr \mcdot{} ) m f) = (inl (F f)))))\000C)
By
Latex:
TACTIC:(Reduce 0 THEN ParallelOp -2 THEN ExRepD)
Home
Index