Step
*
2
1
1
1
1
of Lemma
unary-almost-full-has-strict-inc
.....wf.....
1. A : ℕ ⟶ ℙ
2. ∀s:StrictInc. ⇃(∃n:ℕ. A[s n])
3. ∀m:ℕ. ⇃(∃n:ℕ. (m < n ∧ A[n]))
4. F : ℕ ⟶ ℕ
5. ∀n:ℕ. (n < F n ∧ A[F n])
⊢ λn.primrec(n;F 0;λi,v. (F v)) ∈ StrictInc
BY
{ (BLemma `implies-strict-inc` THEN Reduce 0 THEN Auto) }
1
1. A : ℕ ⟶ ℙ
2. ∀s:StrictInc. ⇃(∃n:ℕ. A[s n])
3. ∀m:ℕ. ⇃(∃n:ℕ. (m < n ∧ A[n]))
4. F : ℕ ⟶ ℕ
5. ∀n:ℕ. (n < F n ∧ A[F n])
6. i : ℕ
⊢ primrec(i;F 0;λi,v. (F v)) < primrec(i + 1;F 0;λi,v. (F v))
Latex:
Latex:
.....wf.....
1. A : \mBbbN{} {}\mrightarrow{} \mBbbP{}
2. \mforall{}s:StrictInc. \00D9(\mexists{}n:\mBbbN{}. A[s n])
3. \mforall{}m:\mBbbN{}. \00D9(\mexists{}n:\mBbbN{}. (m < n \mwedge{} A[n]))
4. F : \mBbbN{} {}\mrightarrow{} \mBbbN{}
5. \mforall{}n:\mBbbN{}. (n < F n \mwedge{} A[F n])
\mvdash{} \mlambda{}n.primrec(n;F 0;\mlambda{}i,v. (F v)) \mmember{} StrictInc
By
Latex:
(BLemma `implies-strict-inc` THEN Reduce 0 THEN Auto)
Home
Index