Step
*
3
1
2
of Lemma
uniform-continuity-from-fan
1. [T] : Type
2. F : (ℕ ⟶ 𝔹) ⟶ T
3. M : n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (T?)
4. [%2] : ∀f:ℕ ⟶ 𝔹
((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (T?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (T?) supposing ↑isl(M n f)))
5. k : ℕ
6. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. (↑isl(M n f))
7. 0 < k
⊢ ∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ T))
BY
{ ((InstConcl [⌜k - 1⌝]⋅ THENA Auto) THEN (UnivCD THENA Auto)) }
1
1. T : Type
2. F : (ℕ ⟶ 𝔹) ⟶ T
3. M : n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (T?)
4. ∀f:ℕ ⟶ 𝔹. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (T?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (T?) supposing ↑isl(M n f)))
5. k : ℕ
6. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. (↑isl(M n f))
7. 0 < k
8. f : ℕ ⟶ 𝔹
9. g : ℕ ⟶ 𝔹
10. f = g ∈ (ℕk - 1 ⟶ 𝔹)
⊢ (F f) = (F g) ∈ T
Latex:
Latex:
1. [T] : Type
2. F : (\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} T
3. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} (T?)
4. [\%2] : \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}
((\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f)))
5. k : \mBbbN{}
6. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. \mexists{}n:\mBbbN{}k. (\muparrow{}isl(M n f))
7. 0 < k
\mvdash{} \mexists{}n:\mBbbN{}. \mforall{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((f = g) {}\mRightarrow{} ((F f) = (F g)))
By
Latex:
((InstConcl [\mkleeneopen{}k - 1\mkleeneclose{}]\mcdot{} THENA Auto) THEN (UnivCD THENA Auto))
Home
Index