Nuprl Lemma : uniform-continuity-pi_wf

[T:Type]. ∀[F:(ℕ ⟶ 𝔹) ⟶ T]. ∀[n:ℕ].  (ucA(T;F;n) ∈ Type)


Proof




Definitions occuring in Statement :  uniform-continuity-pi: ucA(T;F;n) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uniform-continuity-pi: ucA(T;F;n) so_lambda: λ2x.t[x] implies:  Q prop: nat: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x]
Lemmas referenced :  all_wf nat_wf bool_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis lambdaEquality because_Cache natural_numberEquality setElimination rename hypothesisEquality applyEquality independent_isectElimination independent_pairFormation lambdaFormation cumulativity functionExtensionality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T].  \mforall{}[n:\mBbbN{}].    (ucA(T;F;n)  \mmember{}  Type)



Date html generated: 2017_04_17-AM-09_58_00
Last ObjectModification: 2017_02_27-PM-05_51_03

Theory : continuity


Home Index