Step
*
1
1
2
of Lemma
weak-continuity-principle-nat+-int-nat
1. F : (ℕ+ ⟶ ℤ) ⟶ ℕ
2. f : ℕ+ ⟶ ℤ
3. G : n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤ| f = g ∈ (ℕ+n ⟶ ℤ)}
4. ⇃(∃n:ℕ. ∀g:ℕ ⟶ ℤ. (((λn.(f (n + 1))) = g ∈ (ℕn ⟶ ℤ))
⇒ ((F (λn.(f ((n - 1) + 1)))) = (F (λn.(g (n - 1)))) ∈ ℕ)))
5. n : ℕ
6. ∀g:ℕ ⟶ ℤ. (((λn.(f (n + 1))) = g ∈ (ℕn ⟶ ℤ))
⇒ ((F (λn.(f ((n - 1) + 1)))) = (F (λn.(g (n - 1)))) ∈ ℕ))
7. (F (λn.(f ((n - 1) + 1)))) = (F (λn@0.((λi.(G (n + 1) (i + 1))) (n@0 - 1)))) ∈ ℕ
⊢ (F f) = (F (G (n + 1))) ∈ ℕ
BY
{ (Subst' (λn.(f ((n - 1) + 1))) = f ∈ (ℕ+ ⟶ ℤ) -1 THENA Auto) }
1
1. F : (ℕ+ ⟶ ℤ) ⟶ ℕ
2. f : ℕ+ ⟶ ℤ
3. G : n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤ| f = g ∈ (ℕ+n ⟶ ℤ)}
4. ⇃(∃n:ℕ. ∀g:ℕ ⟶ ℤ. (((λn.(f (n + 1))) = g ∈ (ℕn ⟶ ℤ))
⇒ ((F (λn.(f ((n - 1) + 1)))) = (F (λn.(g (n - 1)))) ∈ ℕ)))
5. n : ℕ
6. ∀g:ℕ ⟶ ℤ. (((λn.(f (n + 1))) = g ∈ (ℕn ⟶ ℤ))
⇒ ((F (λn.(f ((n - 1) + 1)))) = (F (λn.(g (n - 1)))) ∈ ℕ))
7. (F f) = (F (λn@0.((λi.(G (n + 1) (i + 1))) (n@0 - 1)))) ∈ ℕ
⊢ (F f) = (F (G (n + 1))) ∈ ℕ
Latex:
Latex:
1. F : (\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}) {}\mrightarrow{} \mBbbN{}
2. f : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. G : n:\mBbbN{}\msupplus{} {}\mrightarrow{} \{g:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}| f = g\}
4. \00D9(\mexists{}n:\mBbbN{}
\mforall{}g:\mBbbN{} {}\mrightarrow{} \mBbbZ{}. (((\mlambda{}n.(f (n + 1))) = g) {}\mRightarrow{} ((F (\mlambda{}n.(f ((n - 1) + 1)))) = (F (\mlambda{}n.(g (n - 1)))))))
5. n : \mBbbN{}
6. \mforall{}g:\mBbbN{} {}\mrightarrow{} \mBbbZ{}. (((\mlambda{}n.(f (n + 1))) = g) {}\mRightarrow{} ((F (\mlambda{}n.(f ((n - 1) + 1)))) = (F (\mlambda{}n.(g (n - 1))))))
7. (F (\mlambda{}n.(f ((n - 1) + 1)))) = (F (\mlambda{}n@0.((\mlambda{}i.(G (n + 1) (i + 1))) (n@0 - 1))))
\mvdash{} (F f) = (F (G (n + 1)))
By
Latex:
(Subst' (\mlambda{}n.(f ((n - 1) + 1))) = f -1 THENA Auto)
Home
Index