Nuprl Lemma : not_over_and

[A,B:ℙ].  (Dec(A)  (A ∧ B) ⇐⇒ A) ∨ B)))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q decidable: Dec(P) or: P ∨ Q guard: {T} not: ¬A false: False cand: c∧ B member: t ∈ T prop: rev_implies:  Q uimplies: supposing a
Lemmas referenced :  not_wf or_wf decidable_wf not_over_and_b
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation independent_pairFormation cut hypothesis sqequalHypSubstitution unionElimination thin sqequalRule inrFormation independent_functionElimination hypothesisEquality introduction extract_by_obid isectElimination inlFormation productEquality cumulativity voidElimination Error :inhabitedIsType,  Error :universeIsType,  universeEquality independent_isectElimination

Latex:
\mforall{}[A,B:\mBbbP{}].    (Dec(A)  {}\mRightarrow{}  (\mneg{}(A  \mwedge{}  B)  \mLeftarrow{}{}\mRightarrow{}  (\mneg{}A)  \mvee{}  (\mneg{}B)))



Date html generated: 2019_06_20-AM-11_16_09
Last ObjectModification: 2018_09_26-AM-10_24_00

Theory : core_2


Home Index