Nuprl Lemma : sq_stable__not
∀[P:ℙ]. SqStable(¬P)
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
not: ¬A
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
sq_stable__from_stable, 
not_wf, 
stable__not, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[P:\mBbbP{}].  SqStable(\mneg{}P)
Date html generated:
2019_06_20-AM-11_15_33
Last ObjectModification:
2018_09_26-AM-10_23_42
Theory : core_2
Home
Index