Nuprl Lemma : Id_sq

SQType(Id)


Proof




Definitions occuring in Statement :  Id: Id sq_type: SQType(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a Id: Id
Lemmas referenced :  subtype_base_sq Id_wf atom2_subtype_base
Rules used in proof :  cut instantiate lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin cumulativity hypothesis independent_isectElimination sqequalRule

Latex:
SQType(Id)



Date html generated: 2016_05_14-PM-03_36_39
Last ObjectModification: 2015_12_26-PM-05_59_25

Theory : decidable!equality


Home Index