Nuprl Lemma : Id_sq
SQType(Id)
Proof
Definitions occuring in Statement : 
Id: Id
, 
sq_type: SQType(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
Id: Id
Lemmas referenced : 
subtype_base_sq, 
Id_wf, 
atom2_subtype_base
Rules used in proof : 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule
Latex:
SQType(Id)
Date html generated:
2016_05_14-PM-03_36_39
Last ObjectModification:
2015_12_26-PM-05_59_25
Theory : decidable!equality
Home
Index