Nuprl Lemma : cardinality-le-list-set

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀L:T List. |{x:T| (x ∈ L)} | ≤ ||L||))


Proof




Definitions occuring in Statement :  cardinality-le: |T| ≤ n l_member: (x ∈ l) length: ||as|| list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf decidable_wf all_wf list_wf set_wf sq_stable__l_member l_member-set list-subtype l_member_wf list-cardinality-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality hypothesis dependent_functionElimination cumulativity equalityTransitivity equalitySymmetry independent_functionElimination setElimination rename because_Cache introduction sqequalRule imageMemberEquality baseClosed imageElimination lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}L:T  List.  |\{x:T|  (x  \mmember{}  L)\}  |  \mleq{}  ||L||))



Date html generated: 2016_05_14-PM-03_31_42
Last ObjectModification: 2016_01_14-PM-11_19_33

Theory : decidable!equality


Home Index