Nuprl Lemma : count-repeats_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List].  (count-repeats(L,eq) ∈ (T × ℕ+List)


Proof




Definitions occuring in Statement :  count-repeats: count-repeats(L,eq) list: List deq: EqDecider(T) nat_plus: + uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T count-repeats: count-repeats(L,eq) so_lambda: λ2y.t[x; y] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: so_lambda: λ2x.t[x] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B so_apply: x[s] so_apply: x[s1;s2]
Lemmas referenced :  deq_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le less-iff-le not-lt-2 false_wf decidable__lt less_than_wf update-alist_wf nil_wf nat_plus_wf list_wf list_accum_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality productEquality because_Cache hypothesis lambdaEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed addEquality setElimination rename dependent_functionElimination unionElimination lambdaFormation voidElimination productElimination independent_functionElimination independent_isectElimination applyEquality isect_memberEquality voidEquality intEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].    (count-repeats(L,eq)  \mmember{}  (T  \mtimes{}  \mBbbN{}\msupplus{})  List)



Date html generated: 2016_05_14-PM-03_22_55
Last ObjectModification: 2016_01_14-PM-11_23_17

Theory : decidable!equality


Home Index