Nuprl Lemma : eq_ds_wf
∀[A:Type]. ∀[d:DS(A)]. ∀[a:A]. ∀[x,y:dstype(A; d; a)].  (x = y ∈ 𝔹)
Proof
Definitions occuring in Statement : 
eq_ds: x = y
, 
dstype: dstype(TypeNames; d; a)
, 
discrete_struct: DS(A)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
eq_ds: x = y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
dseq_wf, 
dstype_wf, 
discrete_struct_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[d:DS(A)].  \mforall{}[a:A].  \mforall{}[x,y:dstype(A;  d;  a)].    (x  =  y  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-PM-03_24_23
Last ObjectModification:
2015_12_26-PM-06_21_44
Theory : decidable!equality
Home
Index