Nuprl Lemma : eq_ds_wf

[A:Type]. ∀[d:DS(A)]. ∀[a:A]. ∀[x,y:dstype(A; d; a)].  (x y ∈ 𝔹)


Proof




Definitions occuring in Statement :  eq_ds: y dstype: dstype(TypeNames; d; a) discrete_struct: DS(A) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  eq_ds: y uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  dseq_wf dstype_wf discrete_struct_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[d:DS(A)].  \mforall{}[a:A].  \mforall{}[x,y:dstype(A;  d;  a)].    (x  =  y  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-PM-03_24_23
Last ObjectModification: 2015_12_26-PM-06_21_44

Theory : decidable!equality


Home Index