Nuprl Lemma : eq_id_self
∀[a:Id]. (a = a ~ tt)
Proof
Definitions occuring in Statement : 
eq_id: a = b
, 
Id: Id
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
eq_id: a = b
, 
eqof: eqof(d)
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
bool_subtype_base, 
eqof_eq_btrue, 
Id_wf, 
id-deq_wf, 
btrue_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[a:Id].  (a  =  a  \msim{}  tt)
Date html generated:
2016_05_14-PM-03_37_17
Last ObjectModification:
2015_12_26-PM-05_58_54
Theory : decidable!equality
Home
Index