Nuprl Lemma : eq_id_self

[a:Id]. (a tt)


Proof




Definitions occuring in Statement :  eq_id: b Id: Id btrue: tt uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a eq_id: b eqof: eqof(d) sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T}
Lemmas referenced :  subtype_base_sq bool_subtype_base eqof_eq_btrue Id_wf id-deq_wf btrue_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis sqequalRule hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom

Latex:
\mforall{}[a:Id].  (a  =  a  \msim{}  tt)



Date html generated: 2016_05_14-PM-03_37_17
Last ObjectModification: 2015_12_26-PM-05_58_54

Theory : decidable!equality


Home Index