Nuprl Lemma : free-from-atom-Id-rw

[i:Id]. ∀[a:Atom1].  uiff(a#i:Id;True)


Proof




Definitions occuring in Statement :  Id: Id free-from-atom: a#x:T atom: Atom$n uiff: uiff(P;Q) uall: [x:A]. B[x] true: True
Definitions unfolded in proof :  Id: Id uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a true: True prop:
Lemmas referenced :  free-from-atom_wf istype-true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation natural_numberEquality sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  extract_by_obid isectElimination thin atomnEquality hypothesisEquality freeFromAtom1Atom2 freeFromAtomAxiom productElimination independent_pairEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType

Latex:
\mforall{}[i:Id].  \mforall{}[a:Atom1].    uiff(a\#i:Id;True)



Date html generated: 2019_06_20-PM-01_58_27
Last ObjectModification: 2019_03_27-PM-03_13_18

Theory : decidable!equality


Home Index