Nuprl Lemma : free-from-atom-Id-rw
∀[i:Id]. ∀[a:Atom1].  uiff(a#i:Id;True)
Proof
Definitions occuring in Statement : 
Id: Id
, 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
true: True
Definitions unfolded in proof : 
Id: Id
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
true: True
, 
prop: ℙ
Lemmas referenced : 
free-from-atom_wf, 
istype-true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
natural_numberEquality, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
atomnEquality, 
hypothesisEquality, 
freeFromAtom1Atom2, 
freeFromAtomAxiom, 
productElimination, 
independent_pairEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType
Latex:
\mforall{}[i:Id].  \mforall{}[a:Atom1].    uiff(a\#i:Id;True)
Date html generated:
2019_06_20-PM-01_58_27
Last ObjectModification:
2019_03_27-PM-03_13_18
Theory : decidable!equality
Home
Index