Nuprl Lemma : l-union-right-contains
∀[T:Type]. ∀eq:EqDecider(T). ∀as,bs,cs:T List.  (as ⊆ cs 
⇒ as ⊆ bs ⋃ cs)
Proof
Definitions occuring in Statement : 
l-union: as ⋃ bs
, 
l_contains: A ⊆ B
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
l_contains: A ⊆ B
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
or: P ∨ Q
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
l_all: (∀x∈L.P[x])
, 
cand: A c∧ B
Lemmas referenced : 
l_all_iff, 
l_member_wf, 
l-union_wf, 
member-union, 
all_wf, 
or_wf, 
l_contains_wf, 
list_wf, 
deq_wf, 
lelt_wf, 
length_wf, 
and_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
productElimination, 
independent_functionElimination, 
inrFormation, 
because_Cache, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
functionEquality, 
universeEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
hyp_replacement, 
equalitySymmetry, 
levelHypothesis, 
equalityTransitivity, 
applyEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs,cs:T  List.    (as  \msubseteq{}  cs  {}\mRightarrow{}  as  \msubseteq{}  bs  \mcup{}  cs)
Date html generated:
2016_10_21-AM-10_38_30
Last ObjectModification:
2016_07_12-AM-05_49_08
Theory : decidable!equality
Home
Index