Nuprl Lemma : member-union

[T:Type]. ∀eq:EqDecider(T). ∀as,bs:T List. ∀x:T.  ((x ∈ as ⋃ bs) ⇐⇒ (x ∈ as) ∨ (x ∈ bs))


Proof




Definitions occuring in Statement :  l-union: as ⋃ bs l_member: (x ∈ l) list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l-union: as ⋃ bs member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q top: Top prop: iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q rev_implies:  Q uimplies: supposing a not: ¬A false: False
Lemmas referenced :  list_induction iff_wf l_member_wf reduce_wf list_wf insert_wf or_wf reduce_nil_lemma reduce_cons_lemma deq_wf nil_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse equal_wf member-insert cons_member cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename because_Cache universeEquality independent_pairFormation inlFormation unionElimination independent_isectElimination equalityTransitivity equalitySymmetry productElimination inrFormation addLevel impliesFunctionality orFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.  \mforall{}x:T.    ((x  \mmember{}  as  \mcup{}  bs)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  as)  \mvee{}  (x  \mmember{}  bs))



Date html generated: 2016_05_14-PM-03_24_34
Last ObjectModification: 2015_12_26-PM-06_21_54

Theory : decidable!equality


Home Index