Nuprl Lemma : member-union
∀[T:Type]. ∀eq:EqDecider(T). ∀as,bs:T List. ∀x:T.  ((x ∈ as ⋃ bs) 
⇐⇒ (x ∈ as) ∨ (x ∈ bs))
Proof
Definitions occuring in Statement : 
l-union: as ⋃ bs
, 
l_member: (x ∈ l)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
l-union: as ⋃ bs
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
Lemmas referenced : 
list_induction, 
iff_wf, 
l_member_wf, 
reduce_wf, 
list_wf, 
insert_wf, 
or_wf, 
reduce_nil_lemma, 
reduce_cons_lemma, 
deq_wf, 
nil_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
equal_wf, 
member-insert, 
cons_member, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
because_Cache, 
universeEquality, 
independent_pairFormation, 
inlFormation, 
unionElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
inrFormation, 
addLevel, 
impliesFunctionality, 
orFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.  \mforall{}x:T.    ((x  \mmember{}  as  \mcup{}  bs)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  as)  \mvee{}  (x  \mmember{}  bs))
Date html generated:
2016_05_14-PM-03_24_34
Last ObjectModification:
2015_12_26-PM-06_21_54
Theory : decidable!equality
Home
Index