Nuprl Lemma : member-insert
∀[T:Type]. ∀eq:EqDecider(T). ∀a:T. ∀L:T List. ∀b:T.  ((b ∈ insert(a;L)) ⇐⇒ (b = a ∈ T) ∨ (b ∈ L))
Proof
Definitions occuring in Statement : 
insert: insert(a;L), 
l_member: (x ∈ l), 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
guard: {T}, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
decidable__l_member, 
decidable-equal-deq, 
list_wf, 
deq_wf, 
insert-cases, 
equal_wf, 
l_member_wf, 
and_wf, 
or_wf, 
cons_member, 
cons_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
cumulativity, 
universeEquality, 
unionElimination, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
sqequalRule, 
inrFormation, 
equalitySymmetry, 
dependent_set_memberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}a:T.  \mforall{}L:T  List.  \mforall{}b:T.    ((b  \mmember{}  insert(a;L))  \mLeftarrow{}{}\mRightarrow{}  (b  =  a)  \mvee{}  (b  \mmember{}  L))
Date html generated:
2016_10_21-AM-09_51_39
Last ObjectModification:
2016_07_12-AM-05_10_02
Theory : list_0
Home
Index