Nuprl Lemma : decidable-equal-deq
∀[T:Type]. (EqDecider(T) ⇒ (∀x,y:T.  Dec(x = y ∈ T)))
Proof
Definitions occuring in Statement : 
deq: EqDecider(T), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T
Lemmas referenced : 
deq_wf, 
deq-witness_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
rename, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
introduction
Latex:
\mforall{}[T:Type].  (EqDecider(T)  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y)))
Date html generated:
2016_05_14-AM-06_06_40
Last ObjectModification:
2015_12_26-AM-11_46_40
Theory : equality!deciders
Home
Index