Nuprl Lemma : decidable-equal-deq

[T:Type]. (EqDecider(T)  (∀x,y:T.  Dec(x y ∈ T)))


Proof




Definitions occuring in Statement :  deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T
Lemmas referenced :  deq_wf deq-witness_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeEquality introduction

Latex:
\mforall{}[T:Type].  (EqDecider(T)  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y)))



Date html generated: 2016_05_14-AM-06_06_40
Last ObjectModification: 2015_12_26-AM-11_46_40

Theory : equality!deciders


Home Index