Nuprl Lemma : deq-witness_wf

[T:Type]. ∀[eq:EqDecider(T)].  (deq-witness(eq) ∈ ∀x,y:T.  Dec(x y ∈ T))


Proof




Definitions occuring in Statement :  deq-witness: deq-witness(eq) deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T deq-witness: deq-witness(eq) all: x:A. B[x] deq: EqDecider(T) implies:  Q exposed-it: exposed-it bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a eqof: eqof(d) decidable: Dec(P) or: P ∨ Q prop: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  bool_wf eqtt_to_assert safe-assert-deq not_wf equal_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality applyEquality sqequalHypSubstitution setElimination thin rename because_Cache hypothesis hypothesisEquality extract_by_obid lambdaFormation unionElimination equalityElimination isectElimination productElimination independent_isectElimination cumulativity inlEquality axiomEquality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination inrEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (deq-witness(eq)  \mmember{}  \mforall{}x,y:T.    Dec(x  =  y))



Date html generated: 2017_04_14-AM-07_39_09
Last ObjectModification: 2017_02_27-PM-03_10_54

Theory : equality!deciders


Home Index