Nuprl Lemma : deq-witness_wf
∀[T:Type]. ∀[eq:EqDecider(T)].  (deq-witness(eq) ∈ ∀x,y:T.  Dec(x = y ∈ T))
Proof
Definitions occuring in Statement : 
deq-witness: deq-witness(eq), 
deq: EqDecider(T), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
deq-witness: deq-witness(eq), 
all: ∀x:A. B[x], 
deq: EqDecider(T), 
implies: P ⇒ Q, 
exposed-it: exposed-it, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
eqof: eqof(d), 
decidable: Dec(P), 
or: P ∨ Q, 
prop: ℙ, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
not_wf, 
equal_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
extract_by_obid, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
cumulativity, 
inlEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
inrEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (deq-witness(eq)  \mmember{}  \mforall{}x,y:T.    Dec(x  =  y))
Date html generated:
2017_04_14-AM-07_39_09
Last ObjectModification:
2017_02_27-PM-03_10_54
Theory : equality!deciders
Home
Index