Nuprl Lemma : l-union_functionality_wrt-l_contains

[T:Type]. ∀eq:EqDecider(T). ∀as1,bs1,as2,bs2:T List.  (bs1 ⊆ bs2  as1 ⊆ as2  as1 ⋃ bs1 ⊆ as2 ⋃ bs2)


Proof




Definitions occuring in Statement :  l-union: as ⋃ bs l_contains: A ⊆ B list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q l_contains: A ⊆ B member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q guard: {T}
Lemmas referenced :  l_all_iff l_member_wf l-union_wf or_wf member-union all_wf l_contains_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut lemma_by_obid isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality setElimination rename hypothesis setEquality productElimination independent_functionElimination unionElimination inlFormation inrFormation because_Cache addLevel allFunctionality impliesFunctionality functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as1,bs1,as2,bs2:T  List.    (bs1  \msubseteq{}  bs2  {}\mRightarrow{}  as1  \msubseteq{}  as2  {}\mRightarrow{}  as1  \mcup{}  bs1  \msubseteq{}  as2  \mcup{}  bs2)



Date html generated: 2016_05_14-PM-03_24_45
Last ObjectModification: 2015_12_26-PM-06_21_57

Theory : decidable!equality


Home Index