Nuprl Lemma : l_disjoint_intersection_implies
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b:T List].  l_disjoint(T;a;b) supposing l_disjoint(T;a;l_intersection(eq;a;b))
Proof
Definitions occuring in Statement : 
l_intersection: l_intersection(eq;L1;L2)
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
list: T List
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
member-intersection, 
and_wf, 
l_member_wf, 
l_disjoint_wf, 
l_intersection_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:T  List].
    l\_disjoint(T;a;b)  supposing  l\_disjoint(T;a;l\_intersection(eq;a;b))
Date html generated:
2016_05_14-PM-03_32_46
Last ObjectModification:
2015_12_26-PM-06_01_09
Theory : decidable!equality
Home
Index