Nuprl Lemma : list-diff_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].  (as-bs ∈ List)


Proof




Definitions occuring in Statement :  list-diff: as-bs list: List deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  list-diff: as-bs uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] prop:
Lemmas referenced :  filter_wf5 l_member_wf bnot_wf deq-member_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality lambdaFormation hypothesis setElimination rename because_Cache setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].    (as-bs  \mmember{}  T  List)



Date html generated: 2016_05_14-PM-03_29_32
Last ObjectModification: 2015_12_26-PM-06_24_46

Theory : decidable!equality


Home Index