Nuprl Lemma : list-to-set-cons
∀[T:Type]
  ∀eq:EqDecider(T). ∀L:T List. ∀a:T.
    (list-to-set(eq;[a / L]) ~ if a ∈b list-to-set(eq;L) then list-to-set(eq;L) else [a / list-to-set(eq;L)] fi )
Proof
Definitions occuring in Statement : 
list-to-set: list-to-set(eq;L)
, 
deq-member: x ∈b L
, 
cons: [a / b]
, 
list: T List
, 
deq: EqDecider(T)
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
list-to-set: list-to-set(eq;L)
, 
l-union: as ⋃ bs
, 
top: Top
, 
insert: insert(a;L)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
has-value: (a)↓
Lemmas referenced : 
reduce_cons_lemma, 
eval_list_sq, 
reduce_wf, 
list_wf, 
insert_wf, 
nil_wf, 
subtype_rel_list, 
top_wf, 
value-type-has-value, 
list-value-type, 
list-to-set_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
callbyvalueReduce, 
sqequalAxiom, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}a:T.
        (list-to-set(eq;[a  /  L])  \msim{}  if  a  \mmember{}\msubb{}  list-to-set(eq;L)
        then  list-to-set(eq;L)
        else  [a  /  list-to-set(eq;L)]
        fi  )
Date html generated:
2016_05_14-PM-03_25_46
Last ObjectModification:
2015_12_26-PM-06_22_44
Theory : decidable!equality
Home
Index