Nuprl Lemma : list-to-set-cons

[T:Type]
  ∀eq:EqDecider(T). ∀L:T List. ∀a:T.
    (list-to-set(eq;[a L]) if a ∈b list-to-set(eq;L) then list-to-set(eq;L) else [a list-to-set(eq;L)] fi )


Proof




Definitions occuring in Statement :  list-to-set: list-to-set(eq;L) deq-member: x ∈b L cons: [a b] list: List deq: EqDecider(T) ifthenelse: if then else fi  uall: [x:A]. B[x] all: x:A. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] list-to-set: list-to-set(eq;L) l-union: as ⋃ bs top: Top insert: insert(a;L) subtype_rel: A ⊆B uimplies: supposing a has-value: (a)↓
Lemmas referenced :  reduce_cons_lemma eval_list_sq reduce_wf list_wf insert_wf nil_wf subtype_rel_list top_wf value-type-has-value list-value-type list-to-set_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination cumulativity hypothesisEquality because_Cache lambdaEquality applyEquality independent_isectElimination callbyvalueReduce sqequalAxiom universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}a:T.
        (list-to-set(eq;[a  /  L])  \msim{}  if  a  \mmember{}\msubb{}  list-to-set(eq;L)
        then  list-to-set(eq;L)
        else  [a  /  list-to-set(eq;L)]
        fi  )



Date html generated: 2016_05_14-PM-03_25_46
Last ObjectModification: 2015_12_26-PM-06_22_44

Theory : decidable!equality


Home Index