Step
*
1
of Lemma
remove-repeats-fun-member
1. [A] : Type
2. [B] : Type
3. eq : EqDecider(B)
4. f : A ⟶ B
5. u : A
6. v : A List
7. ∀a:A. ((a ∈ remove-repeats-fun(eq;f;v))
⇐⇒ ∃i:ℕ||v||. ((v[i] = a ∈ A) ∧ (∀j:ℕi. (¬((f v[j]) = (f a) ∈ B)))))
8. a : A
9. (a ∈ [u / filter(λx.(¬b(eq (f x) (f u)));remove-repeats-fun(eq;f;v))])
⊢ ∃i:ℕ||v|| + 1. (([u / v][i] = a ∈ A) ∧ (∀j:ℕi. (¬((f [u / v][j]) = (f a) ∈ B))))
BY
{ ((RW ListC (-1) THENA Auto)
THEN D (-1)
THEN Try (Complete ((InstConcl [⌜0⌝]⋅ THEN Reduce 0 THEN Auto)))
THEN (RW ListC (-1) THENA Auto)
THEN Reduce (-1)
THEN RepD
THEN (FHyp (-4) [-2] THENA Auto)
THEN ExRepD
THEN (RW assert_pushdownC (-4) THENA Auto)) }
1
1. [A] : Type
2. [B] : Type
3. eq : EqDecider(B)
4. f : A ⟶ B
5. u : A
6. v : A List
7. ∀a:A. ((a ∈ remove-repeats-fun(eq;f;v))
⇐⇒ ∃i:ℕ||v||. ((v[i] = a ∈ A) ∧ (∀j:ℕi. (¬((f v[j]) = (f a) ∈ B)))))
8. a : A
9. (a ∈ remove-repeats-fun(eq;f;v))
10. ¬((f a) = (f u) ∈ B)
11. i : ℕ||v||
12. v[i] = a ∈ A
13. ∀j:ℕi. (¬((f v[j]) = (f a) ∈ B))
⊢ ∃i:ℕ||v|| + 1. (([u / v][i] = a ∈ A) ∧ (∀j:ℕi. (¬((f [u / v][j]) = (f a) ∈ B))))
Latex:
Latex:
1. [A] : Type
2. [B] : Type
3. eq : EqDecider(B)
4. f : A {}\mrightarrow{} B
5. u : A
6. v : A List
7. \mforall{}a:A
((a \mmember{} remove-repeats-fun(eq;f;v)) \mLeftarrow{}{}\mRightarrow{} \mexists{}i:\mBbbN{}||v||. ((v[i] = a) \mwedge{} (\mforall{}j:\mBbbN{}i. (\mneg{}((f v[j]) = (f a))))))
8. a : A
9. (a \mmember{} [u / filter(\mlambda{}x.(\mneg{}\msubb{}(eq (f x) (f u)));remove-repeats-fun(eq;f;v))])
\mvdash{} \mexists{}i:\mBbbN{}||v|| + 1. (([u / v][i] = a) \mwedge{} (\mforall{}j:\mBbbN{}i. (\mneg{}((f [u / v][j]) = (f a)))))
By
Latex:
((RW ListC (-1) THENA Auto)
THEN D (-1)
THEN Try (Complete ((InstConcl [\mkleeneopen{}0\mkleeneclose{}]\mcdot{} THEN Reduce 0 THEN Auto)))
THEN (RW ListC (-1) THENA Auto)
THEN Reduce (-1)
THEN RepD
THEN (FHyp (-4) [-2] THENA Auto)
THEN ExRepD
THEN (RW assert\_pushdownC (-4) THENA Auto))
Home
Index