Nuprl Lemma : remove-repeats-l_contains-iff
∀[T:Type]. ∀eq:EqDecider(T). ∀as,bs:T List.  (as ⊆ bs 
⇐⇒ remove-repeats(eq;as) ⊆ remove-repeats(eq;bs))
Proof
Definitions occuring in Statement : 
remove-repeats: remove-repeats(eq;L)
, 
l_contains: A ⊆ B
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
l_subset: l_subset(T;as;bs)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
Lemmas referenced : 
l_member_wf, 
all_wf, 
member-remove-repeats, 
remove-repeats_wf, 
iff_wf, 
l_subset-l_contains, 
l_contains_wf, 
l_subset_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
because_Cache, 
addLevel, 
productElimination, 
impliesFunctionality, 
allFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
allLevelFunctionality, 
impliesLevelFunctionality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.    (as  \msubseteq{}  bs  \mLeftarrow{}{}\mRightarrow{}  remove-repeats(eq;as)  \msubseteq{}  remove-repeats(eq;bs))
Date html generated:
2016_05_14-PM-03_26_13
Last ObjectModification:
2015_12_26-PM-06_22_59
Theory : decidable!equality
Home
Index