Nuprl Lemma : l_subset-l_contains

[T:Type]. ∀A,B:T List.  (l_subset(T;A;B) ⇐⇒ A ⊆ B)


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B l_subset: l_subset(T;as;bs) list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l_contains: A ⊆ B l_subset: l_subset(T;as;bs) iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  l_all_wf l_member_wf l_all_iff all_wf iff_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality setElimination rename setEquality because_Cache addLevel productElimination impliesFunctionality dependent_functionElimination independent_functionElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}A,B:T  List.    (l\_subset(T;A;B)  \mLeftarrow{}{}\mRightarrow{}  A  \msubseteq{}  B)



Date html generated: 2016_05_14-AM-07_53_35
Last ObjectModification: 2015_12_26-PM-04_47_36

Theory : list_1


Home Index