Nuprl Lemma : l_all_wf

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ].  ((∀x∈L.P[x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_all: (∀x∈L.P[x]) prop: so_apply: x[s] uimplies: supposing a int_seg: {i..j-} sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T so_lambda: λ2x.t[x]
Lemmas referenced :  all_wf sq_stable__le list-subtype select_wf length_wf int_seg_wf list_wf l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity setEquality hypothesisEquality lemma_by_obid isectElimination thin universeEquality isect_memberEquality because_Cache natural_numberEquality applyEquality independent_isectElimination setElimination rename independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination lambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x\mmember{}L.P[x])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_39_28
Last ObjectModification: 2016_01_14-PM-08_21_05

Theory : list_0


Home Index