Nuprl Lemma : retract-compose_wf

[T,A:Type]. ∀[f:T ⟶ A]. ∀[h:Base].
  (retract-compose(h;f) ∈ {g:T ⟶ A| f ∈ (T ⟶ A)} supposing (((T ⊆Base) ∧ (A ⊆Base) ∧ retract(T;h)) and value\000C-type(T))


Proof




Definitions occuring in Statement :  retract-compose: retract-compose(h;f) retract: retract(T;f) value-type: value-type(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop: retract-compose: retract-compose(h;f) sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} has-value: (a)↓ retract: retract(T;f)
Lemmas referenced :  equal_wf subtype_rel_wf base_wf retract_wf value-type_wf subtype_base_sq value-type-has-value
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin dependent_set_memberEquality equalityTransitivity hypothesis equalitySymmetry extract_by_obid isectElimination functionEquality cumulativity hypothesisEquality functionExtensionality applyEquality sqequalRule axiomEquality productEquality independent_isectElimination isect_memberEquality because_Cache universeEquality instantiate dependent_functionElimination independent_functionElimination callbyvalueReduce

Latex:
\mforall{}[T,A:Type].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[h:Base].
    (retract-compose(h;f)  \mmember{}  \{g:T  {}\mrightarrow{}  A|  g  =  f\}  )  supposing  (((T  \msubseteq{}r  Base)  \mwedge{}  (A  \msubseteq{}r  Base)  \mwedge{}  retract(T;h))  \000Cand  value-type(T))



Date html generated: 2017_04_17-AM-09_15_47
Last ObjectModification: 2017_02_27-PM-05_21_13

Theory : decidable!equality


Home Index