Nuprl Lemma : retract-compose_wf
∀[T,A:Type]. ∀[f:T ⟶ A]. ∀[h:Base].
  (retract-compose(h;f) ∈ {g:T ⟶ A| g = f ∈ (T ⟶ A)} ) supposing (((T ⊆r Base) ∧ (A ⊆r Base) ∧ retract(T;h)) and value\000C-type(T))
Proof
Definitions occuring in Statement : 
retract-compose: retract-compose(h;f)
, 
retract: retract(T;f)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
retract-compose: retract-compose(h;f)
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
has-value: (a)↓
, 
retract: retract(T;f)
Lemmas referenced : 
equal_wf, 
subtype_rel_wf, 
base_wf, 
retract_wf, 
value-type_wf, 
subtype_base_sq, 
value-type-has-value
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_set_memberEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
axiomEquality, 
productEquality, 
independent_isectElimination, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
instantiate, 
dependent_functionElimination, 
independent_functionElimination, 
callbyvalueReduce
Latex:
\mforall{}[T,A:Type].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[h:Base].
    (retract-compose(h;f)  \mmember{}  \{g:T  {}\mrightarrow{}  A|  g  =  f\}  )  supposing  (((T  \msubseteq{}r  Base)  \mwedge{}  (A  \msubseteq{}r  Base)  \mwedge{}  retract(T;h))  \000Cand  value-type(T))
Date html generated:
2017_04_17-AM-09_15_47
Last ObjectModification:
2017_02_27-PM-05_21_13
Theory : decidable!equality
Home
Index