Nuprl Lemma : val-union_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].  val-union(eq;as;bs) ∈ List supposing valueall-type(T)


Proof




Definitions occuring in Statement :  val-union: val-union(eq;as;bs) list: List deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a val-union: val-union(eq;as;bs) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall list_wf list-valueall-type evalall-reduce reduce_wf insert_wf valueall-type_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination callbyvalueReduce because_Cache lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].
    val-union(eq;as;bs)  \mmember{}  T  List  supposing  valueall-type(T)



Date html generated: 2016_05_14-PM-03_25_19
Last ObjectModification: 2015_12_26-PM-06_22_28

Theory : decidable!equality


Home Index