Nuprl Lemma : decidable__equal_nat

x,y:ℕ.  Dec(x y ∈ ℕ)


Proof




Definitions occuring in Statement :  nat: decidable: Dec(P) all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} prop: not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] false: False
Lemmas referenced :  decidable__int_equal subtype_base_sq int_subtype_base not_wf equal_wf nat_wf set_subtype_base le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis unionElimination inlFormation instantiate isectElimination cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalRule inrFormation introduction lambdaEquality natural_numberEquality voidElimination because_Cache

Latex:
\mforall{}x,y:\mBbbN{}.    Dec(x  =  y)



Date html generated: 2016_05_14-AM-06_06_13
Last ObjectModification: 2015_12_26-AM-11_46_52

Theory : equality!deciders


Home Index