Nuprl Lemma : eqof_wf

[T:Type]. ∀[d:EqDecider(T)].  (eqof(d) ∈ T ⟶ T ⟶ 𝔹)


Proof




Definitions occuring in Statement :  eqof: eqof(d) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  eqof: eqof(d) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q and: P ∧ Q
Lemmas referenced :  set_wf bool_wf all_wf iff_wf equal_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setElimination thin rename hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination functionEquality lambdaEquality applyEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[d:EqDecider(T)].    (eqof(d)  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2016_05_14-AM-06_06_21
Last ObjectModification: 2015_12_26-AM-11_46_47

Theory : equality!deciders


Home Index