Nuprl Lemma : sq-decider-atom-deq
sq-decider(AtomDeq)
Proof
Definitions occuring in Statement :
atom-deq: AtomDeq
,
sq-decider: sq-decider(eq)
Definitions unfolded in proof :
atom-deq: AtomDeq
,
sq-decider: sq-decider(eq)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
exists: ∃x:A. B[x]
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
guard: {T}
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
has-value: (a)↓
,
eq_atom: x =a y
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
subtype_rel: A ⊆r B
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
true: True
Lemmas referenced :
atom_subtype_base,
assert_of_eq_atom,
is-exception_wf,
has-value_wf_base,
base_wf,
exists_wf,
subtype_rel_self,
subtype_base_sq
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
sqequalRule,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
thin,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
because_Cache,
independent_isectElimination,
hypothesis,
productElimination,
dependent_functionElimination,
hypothesisEquality,
independent_functionElimination,
lambdaEquality,
sqequalIntensionalEquality,
baseApply,
closedConclusion,
baseClosed,
sqequalAxiom,
isect_memberEquality,
divergentSqle,
sqleReflexivity,
callbyvalueAtomEq,
equalityTransitivity,
equalitySymmetry,
applyEquality,
natural_numberEquality
Latex:
sq-decider(AtomDeq)
Date html generated:
2016_05_14-AM-06_07_08
Last ObjectModification:
2016_01_14-PM-07_31_52
Theory : equality!deciders
Home
Index