Nuprl Lemma : unit-deq_wf
UnitDeq ∈ EqDecider(Unit)
Proof
Definitions occuring in Statement : 
unit-deq: UnitDeq, 
deq: EqDecider(T), 
unit: Unit, 
member: t ∈ T
Definitions unfolded in proof : 
unit-deq: UnitDeq, 
deq: EqDecider(T), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
unit_wf2, 
equal-unit, 
assert_wf, 
btrue_wf, 
top_wf, 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
natural_numberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
because_Cache, 
dependent_set_memberEquality
Latex:
UnitDeq  \mmember{}  EqDecider(Unit)
Date html generated:
2016_05_14-AM-06_07_02
Last ObjectModification:
2015_12_26-AM-11_46_27
Theory : equality!deciders
Home
Index