Nuprl Lemma : equipollent-product-assoc

[A,B,C:Type].  A × B × A × B × C


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T spreadn: spread3 prop: biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] implies:  Q pi1: fst(t) so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) surject: Surj(A;B;f)
Lemmas referenced :  biject_wf and_wf equal_wf pi1_wf pi2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_pairFormation lambdaEquality productElimination thin sqequalRule independent_pairEquality hypothesisEquality productEquality cumulativity cut lemma_by_obid sqequalHypSubstitution isectElimination hypothesis universeEquality independent_pairFormation lambdaFormation equalitySymmetry dependent_set_memberEquality equalityTransitivity applyEquality setElimination rename setEquality

Latex:
\mforall{}[A,B,C:Type].    A  \mtimes{}  B  \mtimes{}  C  \msim{}  A  \mtimes{}  B  \mtimes{}  C



Date html generated: 2016_05_14-PM-04_00_37
Last ObjectModification: 2015_12_26-PM-07_44_15

Theory : equipollence!!cardinality!


Home Index