Nuprl Lemma : equipollent_inversion

[A,B:Type].  (A  A)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  equipollent: B uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] biject: Bij(A;B;f) and: P ∧ Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] surject: Surj(A;B;f) all: x:A. B[x] pi1: fst(t) inject: Inj(A;B;f) guard: {T}
Lemmas referenced :  exists_wf biject_wf equal_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination functionEquality cumulativity hypothesisEquality lambdaEquality functionExtensionality applyEquality hypothesis universeEquality promote_hyp because_Cache rename dependent_pairFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairFormation hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[A,B:Type].    (A  \msim{}  B  {}\mRightarrow{}  B  \msim{}  A)



Date html generated: 2016_10_21-AM-10_51_56
Last ObjectModification: 2016_07_12-AM-05_55_52

Theory : equipollence!!cardinality!


Home Index