Nuprl Lemma : equipollent_inversion
∀[A,B:Type].  (A ~ B 
⇒ B ~ A)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
surject: Surj(A;B;f)
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
inject: Inj(A;B;f)
, 
guard: {T}
Lemmas referenced : 
exists_wf, 
biject_wf, 
equal_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
universeEquality, 
promote_hyp, 
because_Cache, 
rename, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[A,B:Type].    (A  \msim{}  B  {}\mRightarrow{}  B  \msim{}  A)
Date html generated:
2016_10_21-AM-10_51_56
Last ObjectModification:
2016_07_12-AM-05_55_52
Theory : equipollence!!cardinality!
Home
Index