Nuprl Lemma : equipollent_transitivity
∀[A,B,C:Type].  (A ~ B 
⇒ B ~ C 
⇒ A ~ C)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
surject: Surj(A;B;f)
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
exists_wf, 
biject_wf, 
compose_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
universeEquality, 
rename, 
dependent_pairFormation, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[A,B,C:Type].    (A  \msim{}  B  {}\mRightarrow{}  B  \msim{}  C  {}\mRightarrow{}  A  \msim{}  C)
Date html generated:
2017_04_17-AM-09_30_53
Last ObjectModification:
2017_02_27-PM-05_31_06
Theory : equipollence!!cardinality!
Home
Index