Nuprl Lemma : equipollent_transitivity

[A,B,C:Type].  (A   C)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  equipollent: B uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] biject: Bij(A;B;f) and: P ∧ Q cand: c∧ B surject: Surj(A;B;f) inject: Inj(A;B;f) all: x:A. B[x] guard: {T} compose: g squash: T true: True subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  exists_wf biject_wf compose_wf equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination functionEquality cumulativity hypothesisEquality lambdaEquality functionExtensionality applyEquality hypothesis universeEquality rename dependent_pairFormation independent_pairFormation dependent_functionElimination independent_functionElimination imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}[A,B,C:Type].    (A  \msim{}  B  {}\mRightarrow{}  B  \msim{}  C  {}\mRightarrow{}  A  \msim{}  C)



Date html generated: 2017_04_17-AM-09_30_53
Last ObjectModification: 2017_02_27-PM-05_31_06

Theory : equipollence!!cardinality!


Home Index