Nuprl Lemma : equiv-equipollent_wf
∀[A,B:Type]. ∀[E:A ⟶ A ⟶ ℙ].  (A ~ B mod (a1,a2.E[a1;a2]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
equiv-equipollent: A ~ B mod (a1,a2.E[a1; a2])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv-equipollent: A ~ B mod (a1,a2.E[a1; a2])
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
exists_wf, 
surject_wf, 
all_wf, 
iff_wf, 
equal_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
hypothesis, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,B:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (A  \msim{}  B  mod  (a1,a2.E[a1;a2])  \mmember{}  \mBbbP{})
Date html generated:
2018_05_21-PM-00_52_57
Last ObjectModification:
2018_05_19-AM-06_39_40
Theory : equipollence!!cardinality!
Home
Index