Nuprl Lemma : equiv-equipollent_wf

[A,B:Type]. ∀[E:A ⟶ A ⟶ ℙ].  (A mod (a1,a2.E[a1;a2]) ∈ ℙ)


Proof




Definitions occuring in Statement :  equiv-equipollent: mod (a1,a2.E[a1; a2]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv-equipollent: mod (a1,a2.E[a1; a2]) so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s1;s2] so_apply: x[s] iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q
Lemmas referenced :  exists_wf surject_wf all_wf iff_wf equal_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality lambdaEquality productEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (A  \msim{}  B  mod  (a1,a2.E[a1;a2])  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-00_52_57
Last ObjectModification: 2018_05_19-AM-06_39_40

Theory : equipollence!!cardinality!


Home Index