Nuprl Lemma : finite'_functionality_wrt_equipollent

[A,B:Type].  (A  (finite'(A) ⇐⇒ finite'(B)))


Proof




Definitions occuring in Statement :  finite': finite'(T) equipollent: B uall: [x:A]. B[x] iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q finite': finite'(T) equipollent: B exists: x:A. B[x] biject: Bij(A;B;f) all: x:A. B[x] member: t ∈ T prop: rev_implies:  Q surject: Surj(A;B;f) compose: g so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t) inject: Inj(A;B;f) guard: {T}
Lemmas referenced :  inject_wf finite'_wf equipollent_wf compose_wf equal_wf exists_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin rename cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality functionExtensionality applyEquality hypothesis functionEquality universeEquality promote_hyp dependent_functionElimination independent_functionElimination sqequalRule dependent_pairFormation equalitySymmetry hyp_replacement Error :applyLambdaEquality,  equalityTransitivity because_Cache lambdaEquality

Latex:
\mforall{}[A,B:Type].    (A  \msim{}  B  {}\mRightarrow{}  (finite'(A)  \mLeftarrow{}{}\mRightarrow{}  finite'(B)))



Date html generated: 2016_10_21-AM-11_00_00
Last ObjectModification: 2016_08_06-PM-02_33_11

Theory : equipollence!!cardinality!


Home Index