Nuprl Lemma : finite'_functionality_wrt_equipollent
∀[A,B:Type].  (A ~ B 
⇒ (finite'(A) 
⇐⇒ finite'(B)))
Proof
Definitions occuring in Statement : 
finite': finite'(T)
, 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
finite': finite'(T)
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
biject: Bij(A;B;f)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
surject: Surj(A;B;f)
, 
compose: f o g
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
inject: Inj(A;B;f)
, 
guard: {T}
Lemmas referenced : 
inject_wf, 
finite'_wf, 
equipollent_wf, 
compose_wf, 
equal_wf, 
exists_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
functionEquality, 
universeEquality, 
promote_hyp, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
dependent_pairFormation, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
equalityTransitivity, 
because_Cache, 
lambdaEquality
Latex:
\mforall{}[A,B:Type].    (A  \msim{}  B  {}\mRightarrow{}  (finite'(A)  \mLeftarrow{}{}\mRightarrow{}  finite'(B)))
Date html generated:
2016_10_21-AM-11_00_00
Last ObjectModification:
2016_08_06-PM-02_33_11
Theory : equipollence!!cardinality!
Home
Index