Nuprl Lemma : finite'_wf
∀[T:Type]. (finite'(T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
finite': finite'(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
finite': finite'(T)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
inject_wf, 
surject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (finite'(T)  \mmember{}  \mBbbP{})
Date html generated:
2016_10_21-AM-10_59_39
Last ObjectModification:
2016_08_06-PM-02_27_39
Theory : equipollence!!cardinality!
Home
Index