Nuprl Lemma : finite'_wf

[T:Type]. (finite'(T) ∈ ℙ)


Proof




Definitions occuring in Statement :  finite': finite'(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T finite': finite'(T) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf inject_wf surject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality cumulativity hypothesisEquality lambdaEquality functionExtensionality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (finite'(T)  \mmember{}  \mBbbP{})



Date html generated: 2016_10_21-AM-10_59_39
Last ObjectModification: 2016_08_06-PM-02_27_39

Theory : equipollence!!cardinality!


Home Index