Nuprl Lemma : finite-bool
finite(𝔹)
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
bool: 𝔹
Definitions unfolded in proof : 
bool: 𝔹
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
unit_wf2, 
finite-unit, 
finite-union
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
independent_pairFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
productElimination, 
independent_functionElimination
Latex:
finite(\mBbbB{})
Date html generated:
2016_10_21-AM-11_00_56
Last ObjectModification:
2016_08_07-PM-11_28_16
Theory : equipollence!!cardinality!
Home
Index