Nuprl Lemma : finite-unit

finite(Unit)


Proof




Definitions occuring in Statement :  finite: finite(T) unit: Unit
Definitions unfolded in proof :  finite: finite(T) exists: x:A. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b squash: T true: True
Lemmas referenced :  false_wf le_wf equipollent_wf unit_wf2 int_seg_wf equipollent-unit int_seg_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformless_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf decidable__le decidable__lt lelt_wf equipollent_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairFormation dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename independent_functionElimination independent_isectElimination productElimination dependent_functionElimination unionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache imageMemberEquality baseClosed

Latex:
finite(Unit)



Date html generated: 2016_10_21-AM-11_00_53
Last ObjectModification: 2016_08_07-PM-11_27_56

Theory : equipollence!!cardinality!


Home Index