Nuprl Lemma : finite-fixed-length
∀T:Type. ∀n:ℕ.  (finite(T) 
⇒ finite({l:T List| ||l|| = n ∈ ℤ} ))
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
finite: finite(T)
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
nat: ℕ
Lemmas referenced : 
equipollent-list, 
finite_wf, 
nat_wf, 
exp_wf4, 
equipollent_wf, 
list_wf, 
equal_wf, 
length_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
cumulativity, 
universeEquality, 
dependent_pairFormation, 
setEquality, 
intEquality, 
setElimination, 
rename, 
natural_numberEquality
Latex:
\mforall{}T:Type.  \mforall{}n:\mBbbN{}.    (finite(T)  {}\mRightarrow{}  finite(\{l:T  List|  ||l||  =  n\}  ))
Date html generated:
2017_04_17-AM-09_34_43
Last ObjectModification:
2017_02_27-PM-05_33_38
Theory : equipollence!!cardinality!
Home
Index