Nuprl Lemma : finite-fixed-length

T:Type. ∀n:ℕ.  (finite(T)  finite({l:T List| ||l|| n ∈ ℤ))


Proof




Definitions occuring in Statement :  finite: finite(T) length: ||as|| list: List nat: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q finite: finite(T) exists: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T prop: nat:
Lemmas referenced :  equipollent-list finite_wf nat_wf exp_wf4 equipollent_wf list_wf equal_wf length_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis cumulativity universeEquality dependent_pairFormation setEquality intEquality setElimination rename natural_numberEquality

Latex:
\mforall{}T:Type.  \mforall{}n:\mBbbN{}.    (finite(T)  {}\mRightarrow{}  finite(\{l:T  List|  ||l||  =  n\}  ))



Date html generated: 2017_04_17-AM-09_34_43
Last ObjectModification: 2017_02_27-PM-05_33_38

Theory : equipollence!!cardinality!


Home Index