Nuprl Lemma : finite-indep-fun

S,T:Type.  (finite(S)  finite(T)  finite(S ⟶ T))


Proof




Definitions occuring in Statement :  finite: finite(T) all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: uall: [x:A]. B[x]
Lemmas referenced :  finite-function finite_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality cumulativity independent_functionElimination hypothesis because_Cache isectElimination universeEquality

Latex:
\mforall{}S,T:Type.    (finite(S)  {}\mRightarrow{}  finite(T)  {}\mRightarrow{}  finite(S  {}\mrightarrow{}  T))



Date html generated: 2016_10_21-AM-11_00_36
Last ObjectModification: 2016_08_06-PM-04_53_58

Theory : equipollence!!cardinality!


Home Index