Nuprl Lemma : function_functionality_wrt_equipollent
∀[A:Type]. ∀[B,C:A ⟶ Type].  ((∀a:A. B[a] ~ C[a]) 
⇒ a:A ⟶ B[a] ~ a:A ⟶ C[a])
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
biject_wf, 
all_wf, 
equipollent_wf, 
exists_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
hypothesis, 
promote_hyp, 
thin, 
productElimination, 
dependent_pairFormation, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
universeEquality, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
applyLambdaEquality, 
because_Cache, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B,C:A  {}\mrightarrow{}  Type].    ((\mforall{}a:A.  B[a]  \msim{}  C[a])  {}\mRightarrow{}  a:A  {}\mrightarrow{}  B[a]  \msim{}  a:A  {}\mrightarrow{}  C[a])
Date html generated:
2017_04_17-AM-09_31_06
Last ObjectModification:
2017_02_27-PM-05_31_25
Theory : equipollence!!cardinality!
Home
Index