Nuprl Lemma : function_functionality_wrt_equipollent

[A:Type]. ∀[B,C:A ⟶ Type].  ((∀a:A. B[a] C[a])  a:A ⟶ B[a] a:A ⟶ C[a])


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q equipollent: B exists: x:A. B[x] member: t ∈ T so_apply: x[s] prop: so_lambda: λ2x.t[x] all: x:A. B[x] pi1: fst(t) biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  biject_wf all_wf equipollent_wf exists_wf equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule cut hypothesis promote_hyp thin productElimination dependent_pairFormation lambdaEquality applyEquality functionExtensionality hypothesisEquality cumulativity functionEquality introduction extract_by_obid isectElimination universeEquality rename equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairFormation applyLambdaEquality because_Cache imageElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B,C:A  {}\mrightarrow{}  Type].    ((\mforall{}a:A.  B[a]  \msim{}  C[a])  {}\mRightarrow{}  a:A  {}\mrightarrow{}  B[a]  \msim{}  a:A  {}\mrightarrow{}  C[a])



Date html generated: 2017_04_17-AM-09_31_06
Last ObjectModification: 2017_02_27-PM-05_31_25

Theory : equipollence!!cardinality!


Home Index