Nuprl Lemma : function_functionality_wrt_equipollent_left

[A,B,C:Type].  (A  A ⟶ B ⟶ C)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  equipollent: B uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] biject: Bij(A;B;f) and: P ∧ Q member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] surject: Surj(A;B;f) inject: Inj(A;B;f) guard: {T} squash: T true: True subtype_rel: A ⊆B uimplies: supposing a rev_implies:  Q compose: g
Lemmas referenced :  surject-inverse exists_wf biject_wf compose_wf equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis functionEquality cumulativity lambdaEquality functionExtensionality applyEquality universeEquality dependent_pairFormation independent_pairFormation comment imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}[A,B,C:Type].    (A  \msim{}  B  {}\mRightarrow{}  A  {}\mrightarrow{}  C  \msim{}  B  {}\mrightarrow{}  C)



Date html generated: 2017_04_17-AM-09_31_10
Last ObjectModification: 2017_02_27-PM-05_31_23

Theory : equipollence!!cardinality!


Home Index