Nuprl Lemma : nsub_finite

n:ℕfinite(ℕn)


Proof




Definitions occuring in Statement :  finite: finite(T) int_seg: {i..j-} nat: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  finite: finite(T) all: x:A. B[x] exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: uimplies: supposing a
Lemmas referenced :  equipollent_weakening_ext-eq int_seg_wf ext-eq_weakening equipollent_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation dependent_pairFormation hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesis because_Cache independent_isectElimination

Latex:
\mforall{}n:\mBbbN{}.  finite(\mBbbN{}n)



Date html generated: 2016_10_21-AM-11_00_18
Last ObjectModification: 2016_08_06-PM-02_34_19

Theory : equipollence!!cardinality!


Home Index