Nuprl Lemma : product_functionality_wrt_equipollent_right
∀[A,B,C:Type].  (A ~ B 
⇒ C × A ~ C × B)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
all: ∀x:A. B[x]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
guard: {T}
Lemmas referenced : 
exists_wf, 
biject_wf, 
pi2_wf, 
pi1_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
universeEquality, 
dependent_pairFormation, 
spreadEquality, 
independent_pairEquality, 
applyEquality, 
productEquality, 
independent_pairFormation, 
promote_hyp, 
because_Cache, 
equalityUniverse, 
levelHypothesis, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A,B,C:Type].    (A  \msim{}  B  {}\mRightarrow{}  C  \mtimes{}  A  \msim{}  C  \mtimes{}  B)
Date html generated:
2016_05_14-PM-03_59_59
Last ObjectModification:
2015_12_26-PM-07_44_37
Theory : equipollence!!cardinality!
Home
Index