Nuprl Lemma : product_functionality_wrt_equipollent_right

[A,B,C:Type].  (A  C × C × B)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] implies:  Q product: x:A × B[x] universe: Type
Definitions unfolded in proof :  equipollent: B uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) all: x:A. B[x] pi2: snd(t) pi1: fst(t) guard: {T}
Lemmas referenced :  exists_wf biject_wf pi2_wf pi1_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination functionEquality hypothesisEquality lambdaEquality hypothesis universeEquality dependent_pairFormation spreadEquality independent_pairEquality applyEquality productEquality independent_pairFormation promote_hyp because_Cache equalityUniverse levelHypothesis dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A,B,C:Type].    (A  \msim{}  B  {}\mRightarrow{}  C  \mtimes{}  A  \msim{}  C  \mtimes{}  B)



Date html generated: 2016_05_14-PM-03_59_59
Last ObjectModification: 2015_12_26-PM-07_44_37

Theory : equipollence!!cardinality!


Home Index